Transcription of the Salmonella invasion gene activator, hilA, requires HilD activation in the absence of negative regulators.
نویسندگان
چکیده
Salmonella enterica serovar Typhimurium causes human gastroenteritis and a systemic typhoid-like infection in mice. Infection is initiated by entry of the bacteria into intestinal epithelial cells and is mediated by a type III secretion system that is encoded by genes in Salmonella pathogenicity island 1. The expression of invasion genes is tightly regulated by environmental conditions such as oxygen and osmolarity, as well as by many bacterial factors. The hilA gene encodes an OmpR/ToxR family transcriptional regulator that activates the expression of invasion genes in response to both environmental and genetic regulatory factors. HilD is an AraC/XylS regulator that has been postulated to act as a derepressor of hilA expression that promotes transcription by interfering with repressor binding at the hilA promoter. Our research group has identified four genes (hilE, hha, pag, and ams) that negatively affect hilA transcription. Since the postulated function of HilD at the hilA promoter is to counteract the effects of repressors, we examined this model by measuring hilA::Tn5lacZY expression in strains containing negative regulator mutations in the presence or absence of functional HilD. Single negative regulator mutations caused significant derepression of hilA expression, and two or more negative regulator mutations led to very high level expression of hilA. However, in all strains tested, the absence of hilD resulted in low-level expression of hilA, suggesting that HilD is required for activation of hilA expression, whether or not negative regulators are present. We also observed that deletion of the HilD binding sites in the chromosomal hilA promoter severely decreased hilA expression. In addition, we found that a single point mutation at leucine 289 in the C-terminal domain of the alpha subunit of RNA polymerase leads to very low levels of hilA::Tn5lacZY expression, suggesting that HilD activates transcription of hilA by contacting and recruiting RNA polymerase to the hilA promoter.
منابع مشابه
Identification and characterization of mutants with increased expression of hilA, the invasion gene transcriptional activator of Salmonella typhimurium.
Induction of invasion gene transcription and expression of the invasive phenotype of Salmonella strains are regulated by environmental conditions. Experimental evidence indicates that oxygen, pH, and osmotic conditions need to closely resemble those of the host intestinal lumen for invasion gene activation. The hilA gene, encoded on Salmonella pathogenicity island 1 (SPI-1), is a transcriptiona...
متن کاملContribution of the RpoA C-terminal domain to stimulation of the Salmonella enterica hilA promoter by HilC and HilD.
Expression of invasion genes in Salmonella pathogenicity island 1 (SPI-1) is mainly driven by the transcriptional activator HilA. Transcription of hilA is subject to complex control and is stimulated by the SPI-1-encoded HilC and HilD proteins. The C-terminal domain of RpoA contributes to hilA activation by HilC/D under certain inducing conditions.
متن کاملHilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype.
The ability of Salmonella enterica serovar Typhimurium to traverse the intestinal mucosa of a host is an important step in its ability to initiate gastrointestinal disease. The majority of the genes required for this invasive characteristic are encoded on Salmonella pathogenicity island 1 (SPI1), and their expression is controlled by the transcriptional activator HilA, a member of the OmpR/ToxR...
متن کاملLon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells.
Salmonella enterica serovar Typhimurium causes self-limiting gastroenteritis in humans and a typhoid-like disease in mice that serves as a model for typhoid infections in humans. A critical step in Salmonella pathogenesis is the invasion of enterocytes and M cells of the small intestine via expression of a type III secretion system, encoded on Salmonella pathogenicity island 1 (SPI-1), that sec...
متن کاملFur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD.
The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 2 شماره
صفحات -
تاریخ انتشار 2003